Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Res Vet Sci ; 170: 105197, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395008

The integration of digitalization and Artificial Intelligence (AI) has marked the onset of a new era of efficient sheep farming in multiple aspects ranging from the general well-being of sheep to advanced web-based management applications. The resultant improvement in sheep health and consequently better farming yield has already started to benefit both farmers and veterinarians. The predictive analytical models embedded with machine learning (giving sense to machines) has helped better decision-making and has enabled farmers to derive most out of their farms. This is evident in the ability of farmers to remotely monitor livestock health by wearable devices that keep track of animal vital signs and behaviour. Additionally, veterinarians now employ advanced AI-based diagnostics for efficient parasite detection and control. Overall, digitalization and AI have completely transformed traditional farming practices in livestock animals. However, there is a pressing need to optimize digital sheep farming, allowing sheep farmers to appreciate and adopt these innovative systems. To fill this gap, this review aims to provide available digital and AI-based systems designed to aid precision farming of sheep, offering an up-to-date understanding on the subject. Various contemporary techniques, such as sky shepherding, virtual fencing, advanced parasite detection, automated counting and behaviour tracking, anomaly detection, precision nutrition, breeding support, and several mobile-based management applications are currently being utilized in sheep farms and appear to be promising. Although artificial intelligence and machine learning may represent key features in the sustainable development of sheep farming, they present numerous challenges in application.


Animal Husbandry , Artificial Intelligence , Sheep , Animals , Humans , Farms , Animal Husbandry/methods , Farmers , Livestock
2.
Cells ; 12(18)2023 09 15.
Article En | MEDLINE | ID: mdl-37759509

The spreading of senescent cells' burden holds profound implications for frailty, prompting the exploration of novel therapeutic targets. In this perspective review, we delve into the intricate mechanisms underlying senescent cell spreading, its implications for frailty, and its therapeutic development. We have focused our attention on the emerging age-related biological factors, such as microbiome and virome alterations, elucidating their significant contribution to the loss of control over the accumulation rate of senescent cells, particularly affecting key frailty domains, the musculoskeletal system and cerebral functions. We believe that gaining an understanding of these mechanisms could not only aid in elucidating the involvement of cellular senescence in frailty but also offer diverse therapeutic possibilities, potentially advancing the future development of tailored interventions for these highly diverse patients.


Frailty , Microbiota , Humans , Age Factors , Cellular Senescence
3.
Geroscience ; 43(2): 579-591, 2021 04.
Article En | MEDLINE | ID: mdl-33123847

C60 is a potent antioxidant that has been reported to substantially extend the lifespan of rodents when formulated in olive oil (C60-OO) or extra virgin olive oil (C60-EVOO). Despite there being no regulated form of C60-OO, people have begun obtaining it from online sources and dosing it to themselves or their pets, presumably with the assumption of safety and efficacy. In this study, we obtain C60-OO from a sample of online vendors, and find marked discrepancies in appearance, impurity profile, concentration, and activity relative to pristine C60-OO formulated in-house. We additionally find that pristine C60-OO causes no acute toxicity in a rodent model but does form toxic species that can cause significant morbidity and mortality in mice in under 2 weeks when exposed to light levels consistent with ambient light. Intraperitoneal injections of C60-OO did not affect the lifespan of CB6F1 female mice. Finally, we conduct a lifespan and health span study in males and females C57BL/6 J mice comparing oral treatment with pristine C60-EVOO and EVOO alone versus untreated controls. We failed to observe significant lifespan and health span benefits of C60-EVOO or EVOO supplementation compared to untreated controls, both starting the treatment in adult or old age. Our results call into question the biological benefit of C60-OO in aging.


Antioxidants , Longevity , Animals , Female , Male , Mice , Mice, Inbred C57BL , Olive Oil
...